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1. Introduction

Modeling time-series with linear pole-zero AutoRegressive-Moving Average (ARMA)
models has numerous applications in signal processing. This problem is in general non linear and
most ARMA modeling techniques are iterative in nature. The Iterative Prefiltering (IP) method
has the advantage of computing potential non-minimum phase representations which may be useful
in time-domain modeling. The original IP minimization procedure is an ill-conditioned problem
which has classically been solved using a least-squares approach. This work presents a modification
of the classical IP technique in which the least-squares iteration step is replaced by a Total Least
Squares (TLS) step to take advantage of the statistical properties of the TLS method. Results show
that improvements in the modeling performances may be obtained by using the TLS-based IP
method when modeling signals distorted by white Gaussian noise.

Section 2 presents a review of the TLS method, and illustrates its main advantages as
compared to the LS method. Next, Section 3 presents the classical Iterative Prefiltering method and
the proposed TLS-based IP method. Finally, conclusions are given in Section 4.

2. Total Least Squares Problem

2.1 Introduction

The Total Least Squares method (TLS) has been introduced recently as a substitute to the
classical Least Squares (LS) method for solving overdetermined linear systems of equations when
all data involved in the computation are corrupted with noise (errors) [1,2]. Consider the problem
of solving the overdetermined system of equations Ax=b, where A has dimension m*n and b has
dimension m*l. The LS solution x, is obtained by minimizing the Euclidean norm IAJ-bII 2.
Solving for the LS solution is equivalent to solving
the following minimization problem:

minimizeeer Ilkb-kU 2

subject to e e R(A)

The above equation is satisfied when b' is the orthogonal projection of b onto R(A). Thus, the LS
vector b' can be viewed as the perturbation of b so that b' can be generated by the range (or the
column space) of A. As a consequence, the LS solution assumes that errors can occur only in the
vector b and not in the matrix A. However, this assumption is not always realistic as errors such
as sampling, modeling, and instrumentation errors may force inaccuracies in A also. The TLS takes
into account the fact that errors may occur both in the matrix A and in the vector b and solves the
following minimization problem:

minimize, g+4 R,'.(..) l[A; -[,1A 112

subject to j e R(A)

Thus, the TLS vector 0 can be viewed as resulting from the perturbation both from the columns of
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A and the vector h so that D belongs to R(A). An illustration of the differences between the LS and

the TLS solution for a system with column space of dimension two is shown in Figure 1.

2.2 SVD-Based Solution of the TLS Problem

The Singular Value Decomposition (SVD) is used to solve the TLS problem [1,2]. Recall
that the system to be solved is of the form Ax_=b, which can be reformulated as:

The TLS solution is found from the SVD of the augmented matrix

C = [A;kl = UEVH-.

The solution is said to be generic or non generic depending on the numerical characteristics of the

eigenvalue matrix E and the right singular vector matrix V.

2.2.a TLS Generic Solution

The TLS solution XrLs is unique and said to be generic if the singular value o.> o.+. and
vn+ln+1 *0. In such a case the solution is given by:

NT*Ls = -l/Vn+1in*[Vln+ l ... '..Vnn ]

When the p smallest singular values are equal, i.e., on. > on, =... =o,+,, the TLS solution
to the linear system is not unique, and any linear combination of the singular vectors associated with
the multiple minimum singular value can be chosen provided that it is normalized properly. The
resulting minimum norm solution can be shown to be equal to [1,3]

Vtc 1-gt

Matrices V, and V2 are submatrices of the matrices of the right singular vector matrices V1 and V2,
where V2 is the matrix of right singular vectors associated with the multiple minimum singular value,
and V, contained all the other right singular vectors. V, and V2 are defined as:

V2 = and V ,

where the vectors c and g' respectively represent the first row of V2 and V,.

Again, the TLS solution exists only if all v0. ,L*O for i=n-p+ 1,...,n+ 1. Van Huffel showed
that no generic solution exists only when the matrix A is nearly rank deficient, or when the set of
equations is conflicting [4]. The set of equations is said to be conflicting when O,.p,+ ...- a,+,• are
large. In such a case, trying to model the data using a linear model is inaccurate, and a better
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option should be chosen by the user. When ,.p.,=... =0,+o are small, two options are possible. The
first option for the user is to remove dependent columns of A to reset the problem so that the
resulting modified A matrix is regular, and to solve a generic TLS problem. How to pick such
columns is addressed in [2,14]. The second option is to solve a nongeneric TLS problem which is
obtained from adding additional constrains on the generic TLS problem in order for it to be
solvable.

2.2.b The Nongeneric TLS Problem

The nongeneric TLS problem is addressed in details in Van Huffel et al. [4,5,7]. The
resulting solution is given by:

XTLs '- - I/Vn + .n-p[V1.n-p1.....Vrn-p1t

when on.p> On.p1 = .. n+11, v 4+li=O for i= n-p+ 1...n+ 1, andvn÷l.n~p, *0.

2.3 Applications or the TLS to Signal Processing Problems

Numerous researchers in Signal Processing have reformulated problems in terms of the TLS
technique. Applications can be found in array processing [11], in system modeling [10], and in
frequency estimation of sinusoidal signals [9,10-13] for example. Results show that improvements
in the performances can be obtained when reformulating LS problems in a TLS set-up for the
applications mentioned above. This result motivated our investigation of the TLS technique to
time-series data modeling. ARMA modeling of time-series is a non-linear problem which has been
extensively studied in the literature [17]. The Iterative Prefiltering (IP) method is an iterative
linearized formulation which was originally proposed by Steiglitz and McBride to identify linear
system transfer functions [15,16], and the IP method can be reformulated to model time-series data
distorted with noise. Note that the method is not insured to converge to the optimal solution and
De Moor showed that it converges to a suboptimal solution only [18]. Nevertheless, simulation
results have shown that useful models can still be obtained using the IP method [19].

3. The Iterative Prefiltering Method

3.1 Introduction

The Iterative Prefiltering method attempts to model a time-series data with an ARMA(P,Q)
system using a time-domain approach by minimizing the error between the data and the impulse
response of the system to be estimated. Using the Z-domain, the model functiur, is given by:

H(z)-= B(z)
A(z)"

where
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p p

A(z) = ] a(k)z -k and B(z) = ] b(k)z-•.
A-O k-O

The error function for the problem is defined by

E(z) = B(z) X(z)A(z)-B(z)
A~z) A(z)

Non-linearity in the problem is due to the denominator A(z) in the error function E(z). The
problem may be linearized by replacing the error function given in eq. (1) with the iterative error
function

E(0(z) = X(z)A°•0(z)-Bc('z)
A ('-)(z)

where indices (i) and (i-1) refer to iterations (i) and (i-I). At each iteration the quantities A(')(z)
and B(')(z) are chosen to minimize the error E(')(z). The estimation of the ARMA transfer function
is done in the time domain using the time series x(n), for n=O,...,N-1, by rewriting E(')(z) in the
time-domain as

E(n(n)=x((n),*a._-h("'Y(n).b(1 , n=O,...,N-1 (2)

with:
E°•(n)=x(-"(n)H.ae-h(",(n).b(' n =0,...,N-1

O(n) =[x('I(n),...,x('I(n-p)]T

where h(')(n) is the impulse response of H(')(z) = 1/Ai('(z), and x(')(n) represents the output of x(n)
through the filter H'i)(z). Eq. (2) expressed in matrix form becomes:

0 .. ... X(,)() a 0)(P) h(')(0) 0 .. 0 b(0(0)

F2 0 .. x.((O) x(N(1) 1(°(P-l) h(()(1) h())..() (3)

((N-P) ... x((N-2) x(N-1)I ()(N-1) ... ... h("NO) b(O(Q)

which may be rewritten as:
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X H ( b (_) (4)

Equation (4) may be decomposed into two parts using the orthonormal projection matrix P onto
the column space of X('), as noted by McClellan and Lee [17], which leads to:

E = P LQd2(X( ')a H(')E
(5)

with P = H(O[H(')IH()]-lH(aH

Recall that the IP iteration minimizes the expression IIE_")112, which leads to the following
minimizaiion problem [17]:

"* (a) minimize p 0X(Oa,- subject to a(')(0)= 1,

"* (b) solve _

Step (a) above may be rewritten as:
[C,-d][a(I)(P),..., 1]T=Q0,

where
C= PýX(i'[1:N,1:P], d=P-X0)[I:N,P+ 1].

Step (a) of the IP method has classically solved using the classical LS approach, which
accounts for errors in d only. However, errors occur both in C and d. A better fit of the data can
be obtained by taking into account for errors in both in C and d, as the TLS set-up allows us to do.
Thus, the TLS-Based IP iteration solves for (a) using a TLS approach [20], which leads to the
following minimization problem:

"• (a) Minimize P-XI'la(i) subject to al')(0) = 1, using a TLS method.

"* (b) solve _H(I)HHO] c _

3.2 Data Scaling

3.2.a Introduction

Van Huffel has shown that when errors in the TLS matrix and right-hand-side vector are
uncorrelated with zero-mean and equal variance, then under mild conditions the TLS solution is
a strongly consistent estimate of the true solution of the unperturbed system [4]. For the problem
considered, errors in the data result from errors in the signal x(n) to be modeled. Assuming the
data to be modeled is distorted with Gaussian white noise, the errors in H(') are correlated as they
are obtained as the output of an AR linear system. However, consistency in the TLS estimate may
still be retained by using the Generalized TLS (GTLS), as proposed originally by Van Huffel
[2,4,17]. Thus, data scaling is needed to insure diagonal error covariance matrices, and the problem
becomes to estimate the error covariance matrices F(') and GOi) at each iteration given by:

F() =E[NH(i)N(i)],
G(') = E[N(i)N(i)H],
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where NW') represents the errors (noise contribution) in [C,-d] at iteration (i).

3.2.b Computation of the Matrix F"

Assume that the noisy signal x(n) is defined by x(n)=s(n)+w(n), where w(n) is wss white
noise, and s(n) is an ARMA signal. The noise correlation matrix F(') may be expressed in terms
of the correlation matrix Rw(i) obtained from the AR process 1/A(')(z):

F¢O = E[N¢OHN¢O1 = E[CP`W))f(p-w0)I

= E[WHORPLEPW(O]

=- yw(aINP-'WIpJ] = E[W(,(1-p)wjI). (6)

- E[W()HW()1 I-E[V(i)W(i)]

- O - E(l)

Computations show that the components of Ew€') in equation (6) can be expressed as:

Ewlk= Pqjr~()Il+q-j-kD),(7
qj=1

where P1,, is the (ij)"h component of the projection matrix P defined earlier, and rw(')(n) is the
correlation function obtained when passing the white noise w(n) through the AR system with
transfer function I/A(i)(z). Using the fact that the noise distortion w(n) is assumed to be white,
rwI)([l+q-j-kI) is non zero only when I+q-j-k=0. Thus, the double summation in equation (7)
reduces to a single summation. Furthermore, the correlation function rw(')(k) can easily be
computed using the results by Dugre et. al. [6] who proposed an algorithm to generate a covariance
sequence from its AR coefficients.

3.2.c Computation or the matrix Gt"

Again the error covariance matrix GO') may be expressed in terms of the correlation matrix
Rw(i) obtained from the AR process 1/A(')(z) obtained at iteration (i) by:

F(O-= E[N(ON<OH] = PiE[WoXW(OH)]P±
(8)

3.2.d GTLS Solution

Applying the results presented by Van Huffel, the general TLS-based IP iterative solution
for a"W at iteration (i) is then given by solving:
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(R[C,-d!J(R,)).1) RýOI - with RPco(~b G~=~,"

with:

E=diag[Fa .... Jc_,0,.. .0]

where r is the rank of Rr?). Next, the estimate for b(') can be obtained by replacing a(' by its value
in the expression:

3.3 Simulation Results

The TLS-based IP method is Lmplemented on time-series data generated by an ARMA(3,4)
in additive white noise and its performances compared with that of the LS-based IP method. In both
cases, initial estimates for the iterative procedures are obtained using Yule Walker equations for
the poles and Shank's technique when solving for the zeros. The resulting noisy signal is modelled
with an ARMA(5,6) using a sequence of length 60. The noise variance is chosen equal to 2 and the
ARMA parameters are chosen equal to:

a = [ 1,-2,1.6725,-0.4613]
b= [ 1,-.9,0.04,0.3960,-0.2912]

Figure 2.a shows the noise-free signal, the noisy signal, and the estimated signal obtained
during the first 5 iterations using the classic IP method. Power spectral estimates obtained for the
noise-free signal, the noisy signal, and that obtained with the initial ARMA coefficients estimated
using Yule Walker equations and Shank's method, are shown in Figure 2.b. Figures 3.a and 3.b
represent the same estimates obtained when using the proposed TLS-based IP scheme. Note that
Figures 2 and 3 represent the best performances obtained during the first 5 iterations for both
schemes. Figure 4 and 5 represent the true pole (ar) and zero (bp) locations, and estimated poles
(a1P) and zeros (b1p) locations obtained when using the IP and TLS-based IP schemes. This example
illustrates the fact that the bias in the estimated pole locations obtained using the TLS-based
technique is usually smaller than that obtained using the LS-based IP method when the SNR is
medium to high. However, we noted that when the SNR is low, no distinct improvement is noted
consistently when using the proposed technique.

4. Conclusions

This study has investigated the application of the TLS problem in the Iterative Prefiltering
method for time-domain ARMA modeling. Results show that the pole bias is usually smaller when
using the TLS-based scheme than when using the classical LS-based IP method, when SNR are
medium to high. We note that, similarly to the LS-based method, the TLS-based IP method is not
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TLS-based IP method. The main drawback in the proposed TLS-based IP method is the
computational load increase.
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Figure la) LS solution to Ax= b; b) TLS solution to Ax =b.
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estimated signal: dash -noise free signal:solid -noisy signal; do t

0.11I

0.-

0.

-0. *

-o.

0 10 20 30 40 50 60
time

H est(f):dash -Hnoise free(f):dot -Hitl(f):solid

4-

V43

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
norm, frequency

Figure 2.a) Noise-free signal, noisy signal, LS-based I P estimated signal; b)Spectra: H noise free:
noise-free signal, H-est:LS-based IP signal, H-Iit I: initial estimate.



estisasted signal: dash -noise froe signal;solid -noisy signal: do t

0.11II

0.,

0'

010 20 30 40 50 60

It-est(f):dash H- noise-free(f):dot - itlii(f):eolid

4

3I

12gI

4'*

- -

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
norm. frequency

Figure 3.a) Noise-free signal, noisy signal, TLS-based IP estimated signal; b)Spectra:
H noise free: noise-free signal, H est: TLS-based IP signal, H-i hi: initial estimate.
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Figure 4.True pole (ap) and zero (bP) locations; LS-based IP estimated pole (aip) and zero (bp)
locations.
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Figure 5.True pole (ar) and zero (br) locations; TLS-based IP estimated pole (ap) and zero (bq,)
locations.

14



References

[1] G.H. Golub & C.F. Van Loan, Matrix Computations, 2nd Ed., John Hopkins University
Press, 1989.

[21 S. Van Huffel & J. Vanderwaile, The Total Least Squares Problem: Computational Aspects
and Analysis, SIAM, 1991.

[3] E.M. Dowling & R.1. DeGroat, "The Equivalence of the Total Least Squares and the
Minimum Norm Methods," IEEE Trans. on SP, Vol. 39, No. 8, Aug. 1991, pp. 1891-1892.

[4] S. Van Huffel "The Generalized Total Least Squares Problem," NATO ASI Series, Vol. F70,
Springer Verlag, 1991.

[5] S. Van Huffel & J. Vanderwalle, "Analysis and Properties of the Generalized Total Least
Squares Problem AX = B when Some or All Columns in A are Subject to Errors," SIAM J.
Matrix Appl., Vol. 10, No. 3, July 1989, pp. 294-315.

[6] J.P. Dugre, A.A. Beex, & L.L. Scharf, "Generating Covariance Sequences and the
Calculation of Quantization and Rounding Errors variance in Digital Filters," IEEE Trans.
on ASSP, Vol. ASSP-28, No. 1, Feb. 1980, pp. 102-104.

[7] S. Van Huffel, "Analysis and Solution of the Nongeneric Total Least Squares Problem,"
SIAM Matrix Anal. Appl., Vol. 9, No. 3, July 1988, pp. 360-372.

[8] P. Stoica, T. Soderstrom, & S. Van Huffel, "On the Equivalence of SVD and TLS based
Yule-Walker approaches to Frequency Estimation," Signal Processing VI, 1992, pp. 669-672.

[9] Y. Hua & T.P. Sarkar, "On the Total Least Squares Linear Prediction Method for
Frequency Estimation," IEEE Trans. on ASSP, Vol. ASSP-38, No. 12, Dec. 1990, pp.2 186-
2189.

[10] C.E. Davila, "Total Least Squares System Identification and frequency Estimation for
Overdetermined Model Orders," ICASSP Proc., April 1993, pp. IV468-471.

[11] P. Stoica, T. Soderstrom, & S. Van Huffel, "On SVD-Based and TLS-Based High-Order
Yule-Walker methods of Frequency Estimation," Signal Processing, Vol. 29, 1992, pp. 309-
317.

[12] K.S. Arun,"A Unitarily Constrained Total Least Squares Problem in Signal Processing,"
SIAM Matrix Anal. Appl., Vol. 13, No. 3, July 1992, pp. 729-745.

[13] P.M. Rands Jensen & K. Hermansen, "Application of SVD to AR Spectral Estimation,"
Signal Processing VI, 1992, pp. 763-766.

[14] S. Van Huffel & J. Vanderwafle, "Subset Selection Using the Total Least Squares Approach

15



in CoUinearity Problems with Errors in the Variables," Linear Alg. and its Appl., Vol. 88,
No. 89, 1987, pp. 695-714.

[14] S. Van Huffel & J. Vanderwalle, "Comparison of Total Least Squares and Instrumental
Variable Methods for Parameter Estimation of Transfer Function Models," Int. J. Control.
Vol. 50, No. 4, 1989, pp. 1039-1056.

[15] K. Steiglitz & L.E. McBride, "A Technique for the Identification of Linear Systems," IEEE
Trans. on Aut. Cont., 1965, pp. 461-464.

[16] K. Steiglitz, " On the Simultaneous Estimation of Poles and Zeros in Speech Analysis,"
IEEE Trans. on ASSP, Vol. ASSP-25, No. 3, June 1997, pp. 229-239.

[17] J.H. McClellan & D. Lee, "Exact Equivalence of the Steiglitz-McBride Iteration and IQML,"
IEEE Trans. on SP, Vol. 39, No. 2, Feb. 1991, pp. 509-512.

[18] B. De Moor, "Total Least Squares for Affinely Structured Matrices and the Noisy
Realization Problem," Int. Report, ESAT-SISTA/TR 1993-21, Katholieke Universiteit
Leuven, Leuven, Belgium.

[19] T.P. Johnson, ARMA Modeling Methods for Acoustic Signals, MSEE Thesis, Naval
Postgraduate School, March 1992.

[20] M.P. Fargues, "TLS-Based Iterative Prefiltering for ARMA Modeling," 3 rd SIAM Conference
on Linear Algebra, Signals, Systems, and Control, Aug. 16-19, 1993, Seattle, WA.

16



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Dudley Knox Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5101

3. Chairman, Code EC 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

4. Professor Monique P. Fargues, Code EC/Fa 5
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

17


